

Development of an Evaluation Protocol for Closed-Cell SPF

PART II TEST RESULTS

MARY BOGDAN - HONEYWELL

RICK DUNCAN - SPFA TECHNICAL CONSULTANT

Mary Bogdan Research Fellow - Honeywell

Mary Bogdan is a Research Fellow for Honeywell and is the Technology Lead for the Blowing Agent Technical Sales and Service Group. She earned a bachelor's degree in Chemistry/Biochemistry and an MBA from Canisius University. Since joining Honeywell in 1989, Mary has held numerous positions in research and development. She currently supports the global fluorine products blowing agent business.

Over her career, she has worked on the introduction of Honeywell's HCFC, HFC and HFO technology across many applications. She is a Six Sigma Black belt. She has more than 30 U.S. patents and has numerous published technical articles on the development and use of fluorocarbons as foam blowing agents. She has coauthored and presented several CPI papers receiving the CPI Best paper awards for 12 of her presentations. She has received a Distinguished leadership award from ACC CPI and a Heroes in Chemistry Award from the ACS.

She is on the Board of Directors for SPFA and actively represents Honeywell on several Trade Association (including ACC- CPI committees), ASTM and Building Code committees.

mary.bogdan@honeywell.com

Rick Duncan Technical Consultant - SPFA

Rick brings more than 25 years of experience in technical marketing, building science, and product/business development delivering new materials and applications to the construction market. Drawing from his prior teaching experience, Rick simplifies complex building envelope issues and clearly describes solutions for construction and design professionals. Rick served as technical director of SPFA from 2008-2020, and as executive director from 2020 to 2024. As a technical consultant to SPFA, he oversees all technical activities for the organization. He holds a Ph.D. in Engineering Science and Mechanics Penn State, MSME from Bucknell and a BSME from the University of Maryland. Rick is a Registered Professional Engineer in Pennsylvania.

rickduncan@envelogic.com 410-920-9920

SPFA Antitrust Policy

"Our policy is to comply with all federal, state and local laws, including the antitrust laws. It is expected that all company member representatives involved in SPFA activities and SPFA staff will be sensitive to the unique legal issues involving trade associations and, accordingly, will take all measures necessary to comply with U.S. antitrust laws and similar foreign competition laws."

It is a per se violation of the federal antitrust laws for competitors to agree on prices, limitation of supplies, allocation of customers or territory, or boycotts. "Per se" means that no legal defense can be used to mitigate this automatic violation.

Even an agreement by competitors that is for the good of society and our industry may be a violation of the antitrust laws if it could affect competition.

If a topic of antitrust concern is raised at any time during a meeting, note your objection for the record. If the topic continues to be discussed, you should leave the room immediately and contact SPFA's general counsel and your company's attorney for further guidance.

Ensure that every SPFA meeting, where members are present, has an agenda, the agenda is followed, and minutes are kept by SPFA staff of the proceedings.

Understanding and acting on the requirements of U.S. and foreign antitrust and competition laws sometimes can be difficult. If you have a question about the propriety of activities or discussions in SPFA, you are encouraged immediately to contact your company's legal counsel and SPFA management.

Spanish Translation Disclaimer

This presentation will include subtitles generated automatically based on the speaker's voice using automated translation software.

SPFA has undertaken reasonable efforts to provide an accurate translation, however, no automated translation is perfect nor is it intended to replace human translators. The translated subtitles are provided as a service and "as is." SPFA makes no warranty or representation of any kind as to the accuracy, reliability, or correctness of any of the translated subtitles. Any discrepancies or differences created in the translation from English to Spanish are not binding and have no legal effect for compliance, enforcement or other purposes.

Overview

Task Group

Evaluation Protocol (Current Research)

Frame Testing

- Exotherm Data
- Frame Load Data
- Change in Foam Thickness

Box testing:

- Density
- % Closed cell content
- Vol % Dimensional stability

Conclusions

Recommendations

SPFA High-Lift Foam Task Group

Formed under the SPFA BEC

Small group of SPFA Consultants, Suppliers, and Contractors only

Initially to evaluate installation performance of high-lift foams

Correlate application techniques with foam quality

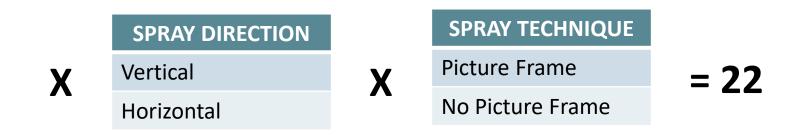
Members:

- Mary Bogdan, Honeywell
- Tom Harris, Tom Harris PUR Consulting
- Mac Sheldon, Sheldon Consulting
- Shawn Wate, TruTeam
- George Spanos, SPI
- Rick Duncan, SPFA
- Patrick Stehley, Honeywell

SPFA High-Lift Foam Task Group

Honeywell Buffalo Research Lab Staff

Recognized for the work and dedication to completing this project


Commercial	TSS Foam Lab	Refrigeration Lab	Site Services
Stephanie Madara	Mary Bogdan		Randy Speed
	Patrick Stehley		Tom Canti
	Molly Bartz		Brian Duke
	Matt Bennett	Elizabet Vera Becerra	Gerald Mangus
	David Decker		
	David Gorski		

Labor Intensive Test Program

Test Protocol Variables

METHOD						
Pass Thickness x Number	Time Between Passes					
1" x 6	30 sec					
2" x 3 non-vertical	30 sec					
2" x 3 vertical	30 sec, plus <100°F surface, 30 min*					
3″ x 2	30 sec					
5″ x 1	N/A					

Focus Of Study- Impact of Application Variables

Test Protocol Constant

MANPOWER

Applicator: Jeremy Ramer - TruTeam

Honeywell Lab Personnel

MATERIALS

HFO Medium Density ccSPF (non-high lift)

Wood Frames

Cardboard Liner

MACHINE

Material Temperature = 80°F

Graco H40, 10/50 ft hose

AP Fusion Gun with 4242 Mixing Chamber

Temperature A/B = 120°F

Pressure = 1200 psi

METHODS

30 sec between passes (except two controls)

Substrate Moisture Probe/ Temperature Heat Gage

Crane Digital Load Gage

Frame Release Time = 30 min

Wood Moisture – Pin Gage

Ambient Temp/Humidity – 65-70°F, 25-50% RH

MEASUREMENT

Fram Moisture

Room Temperature / Humidity

Exotherm – 3 pts using TC @ 10 sec intervals for 48h

Frame Load - 15 min first hour, then hourly for 24h+

Foam Property Testing

Frame Testing

Focus Of Study- Impact of Application Variables

22 Frame & Box Samples Prepared

What We Sprayed

Sprav	Spray Technique/Lift Configurations		А	В	С	D	Control
	Picture Frame	Spray Direction	6@1"	3 @ 2"	2@3"	1@5″	3@2″
1	Yes	Side-side	>	~	~	>	>
2	No	Side-side	>	 Image: A second s	>	>	$>\!$
3	Yes	Vertical	>	 ✓ 	>	>	>
4	No	Vertical	>	 Image: A second s	>	>	>
5	Yes	Rising Foam	$\left \right\rangle$	~	>	\succ	>
6	No	Rising Foam	\succ	~	>	\succ	\triangleright
7	No	Vertical <100F	>	\geq	\ge	> <	(1)
8	No	Vertical 30 min	>	\geq	\succ	$>\!$	(2)

- Non-High Lift HFO medium-density closed-cell foam applied
- Lift configuration D was limited to 5" to avoid exothermic scorching
- Control Foam Sprayed in No Picture Frame and Vertical Method

 (1) Waiting until surface temperature of foam reaches 100°F before next pass
 (2) Waiting 30 minutes between each pass

Frame Test

12

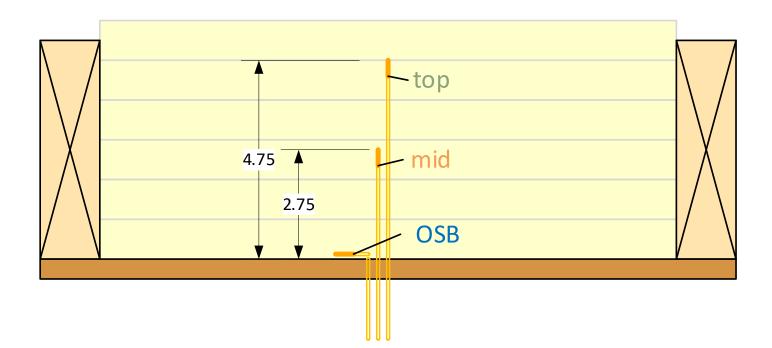
Testing on 22 Frame Testing Timeline Sample Frames

Property	Test Method	Timeline
Exothermic Temperatures	Thermocouples with automated data acquisition	10 second intervals for up to 48 hours after spraying
		<1 hour: 15-min intervals after release
Frame Load	Frame with load cell (manually recorded)	1-8 hours: 1-hr intervals 24 hours
		2, 3, 4, 5, 7 or 30 days after release
Change in Thickness	Pin Probe	8, 24 and 45 days after spraying

Frame Test

Exotherm vs Application Technique

Exothermic Temperature Test


- Data: Exotherm Temperature vs. Time
- Location: top/middle/bottom of Frame
- Frequency: 10 second intervals
- Duration: 48 hours

900,000 + Data Points

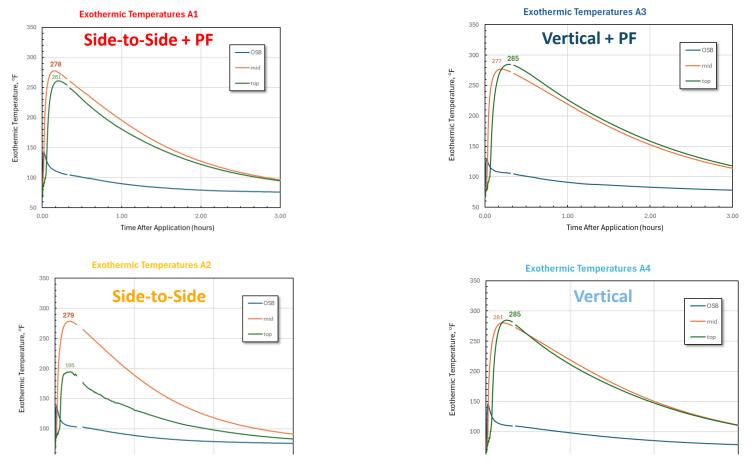
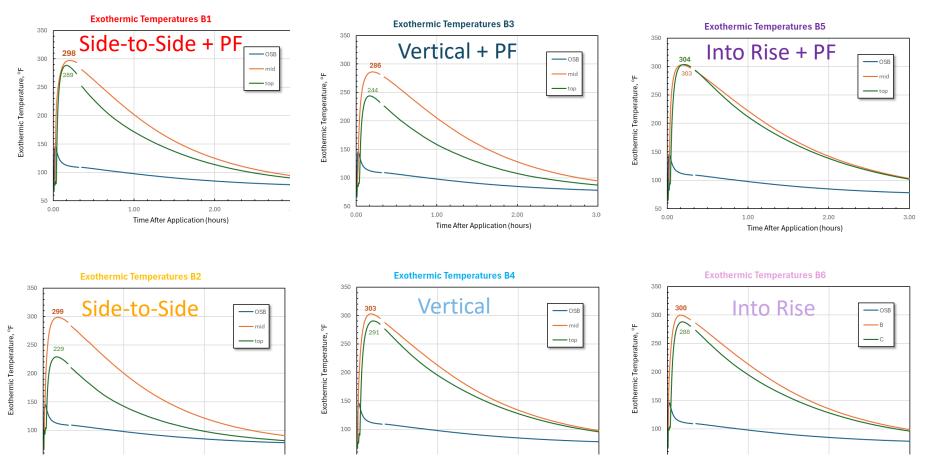
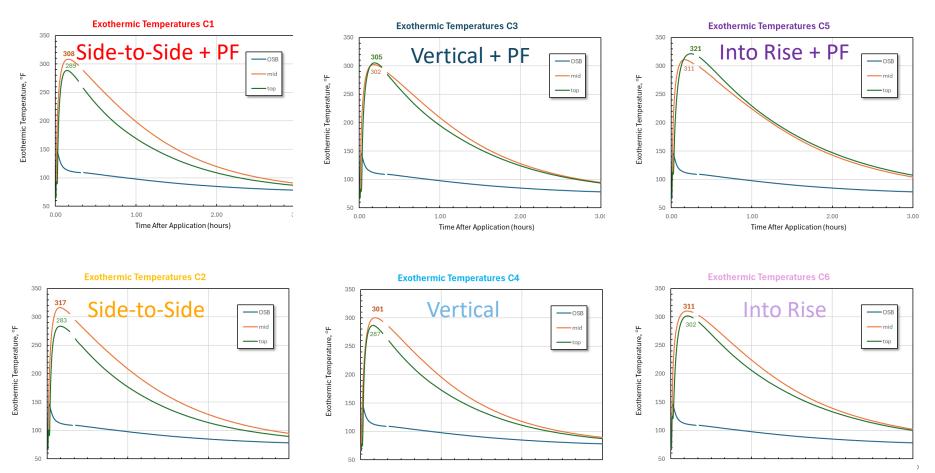

Thermocouple Placement

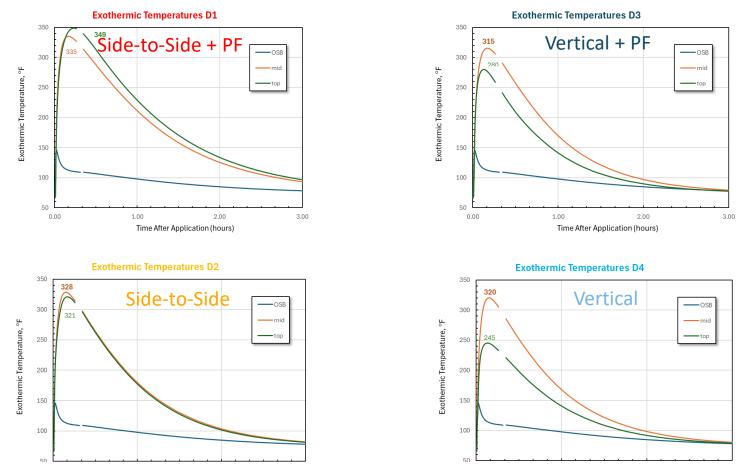
Illustration of thermocouple placement in spray frame


Exotherm vs Time: 6 x 1" Lifts

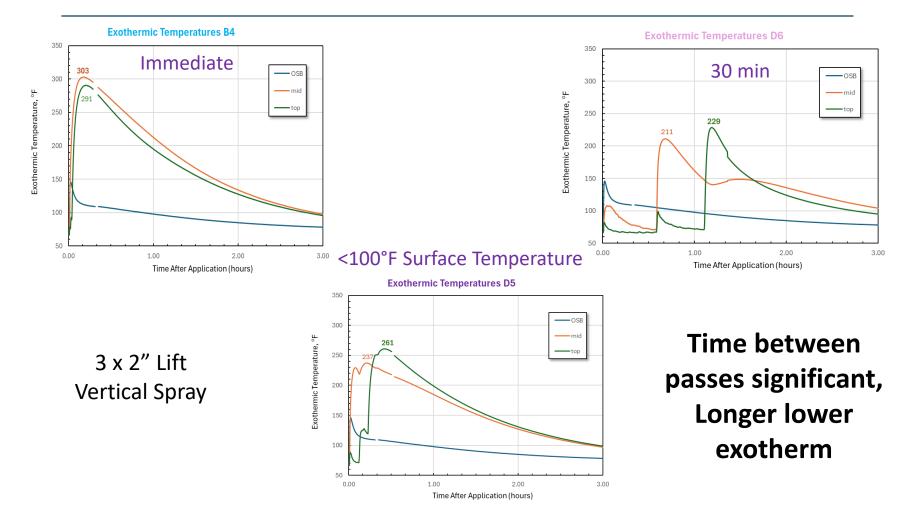
OSB minimal impact, Side-to-Side bigger upper layer difference


Exotherm vs Time: 3 x 2" Lifts

OSB minimal impact, Side-to-Side bigger upper layer difference


Exotherm vs Time: 2 x 3" Lifts

OSB minimal impact, Min upper layer differences


Exotherm vs Time: 1 x 5" Lift

OSB minimal impact, Vertical bigger upper layer difference

Exotherm vs Time vs Time Between Pass

Exotherm Summary Data

Peak Exothermic	Гетреrature (°F)	Lift Configurations						
Spray Tec	Spray Technique			С	D	С		
Picture Frame	Spray Direction	6 @ 1"	3 @ 2"	2 @ 3"	1 @ 5"	3 @ 2"		
Yes	Side-side	278	298	308	349	>>		
No	Side-side	279	299	317	328	\succ		
Yes	Vertical	284	286	305	315	$>\!$		
No	Vertical	285	302	301	320	>		
Yes	Rising Foam	\succ	304	321	\succ	\succ		
No	Rising Foam	\succ	300	311	\succ	\succ		
No	Vertical <100	\succ	\succ	\succ	\succ	261		
No	Vertical 30 min	\succ	\succ	\succ	\succ	229		
	Average	282	298	311	328	245		

OBSERVATIONS FOR PEAK EXOTHERMIC TEMPERATURES:

- Picture Framing has no visible impact on max temperature
- Mildly dependent on spray direction
- Heavily dependent on lift thickness
- Installation per Manufacturers Installation Instructions (MII) provide lowest peak temperatures

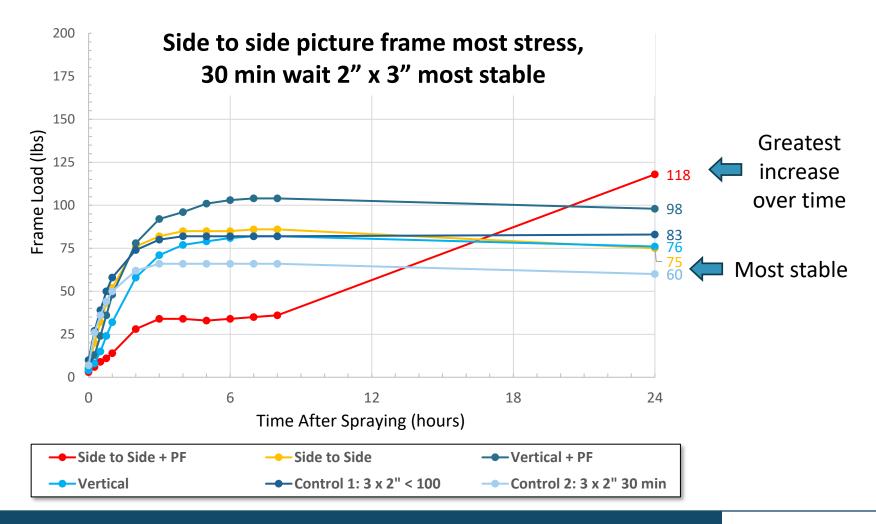
Application vs Time to Reach <80°F (Hr: Min)

Coroy Technique		Lift Configurations							
Spray red	Spray Technique			С	D	Control			
Picture Frame	Spray Direction	6 @ 1"	3 @ 2"	2 @ 3"	1 @ 5″	3 @ 2"			
Yes	Side-side	<mark>5:08</mark>	4:28	4:24	4:55	$>\!$			
No	Side-side	4:32	4:20	4:52	3:20	$>\!$			
Yes	Vertical	<mark>6:14</mark>	4:49	4:51	3:26	>			
No	Vertical	<mark>5:48</mark>	4:39	4:28	3:34	$>\!$			
Yes	Rising Foam	\triangleright	4:31	<mark>5:41</mark>	$>\!$	\triangleright			
No	Rising Foam	\triangleright	<mark>5:05</mark>	<mark>5:20</mark>	\succ	\triangleright			
No	Vertical < 100°F surface	\succ	\succ	\succ	\succ	4:54			
No	Vertical 30 min	\succ	\succ	\succ	\succ	4:20			

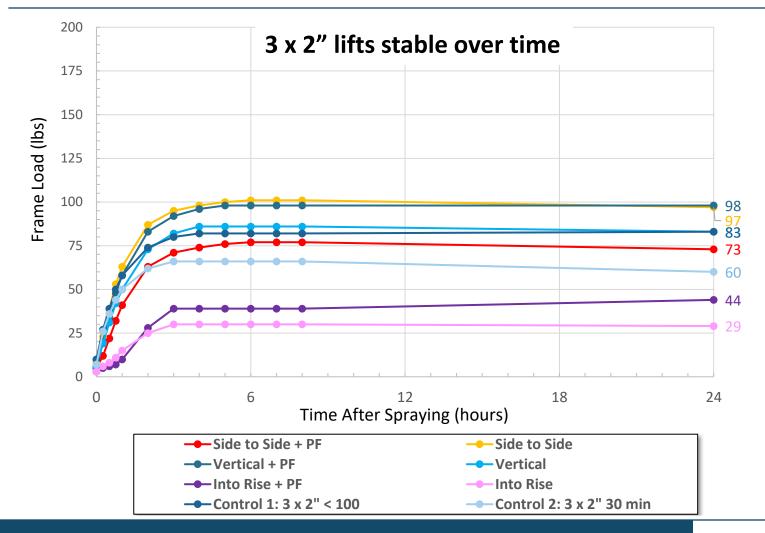
- 6 x 1" pass took the longest time to drop below 80°F
- 1 x 5" pass took the least amount of time to drop below 80°F
- Comparing 30 second wait time to MII wait time shows insignificant difference in time to drop below 80°F

Frame Test

Frame Pressure vs Application


Frame Load Data Collection

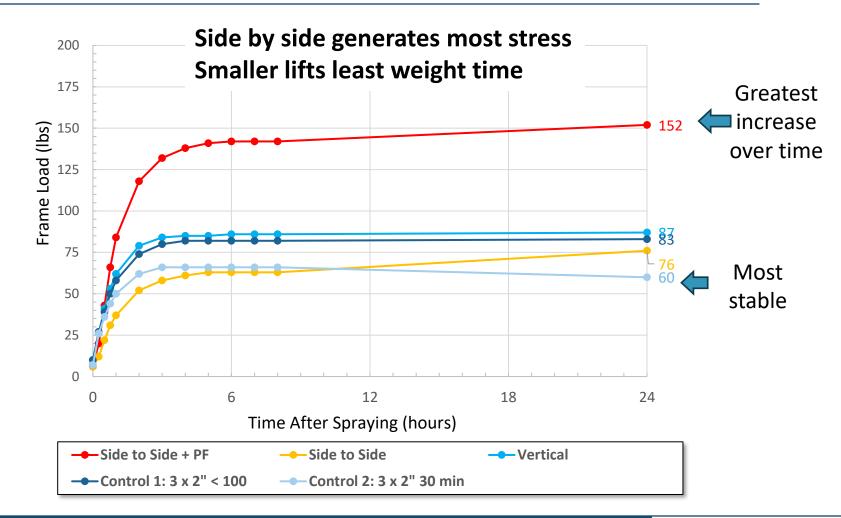
Time	Measurement Interval
<1 hour	15 min
1-8 hour	1 hr
> 24 hours	1,2,3,4,5,7,30 Days



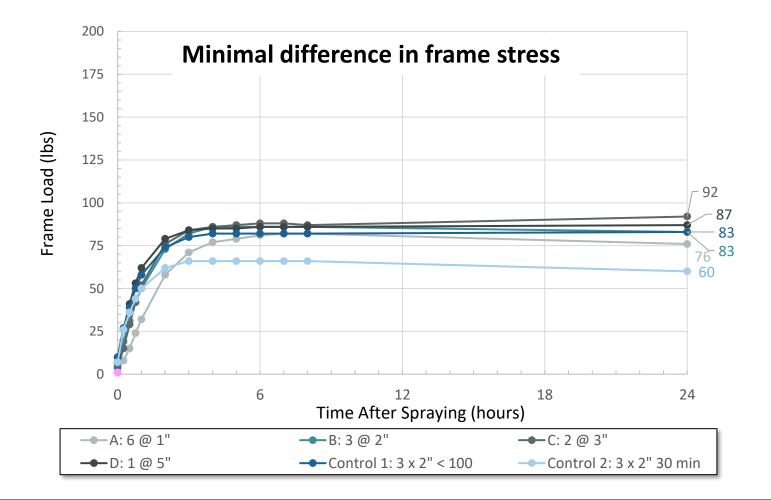
Frame Load vs Application (6 x 1")



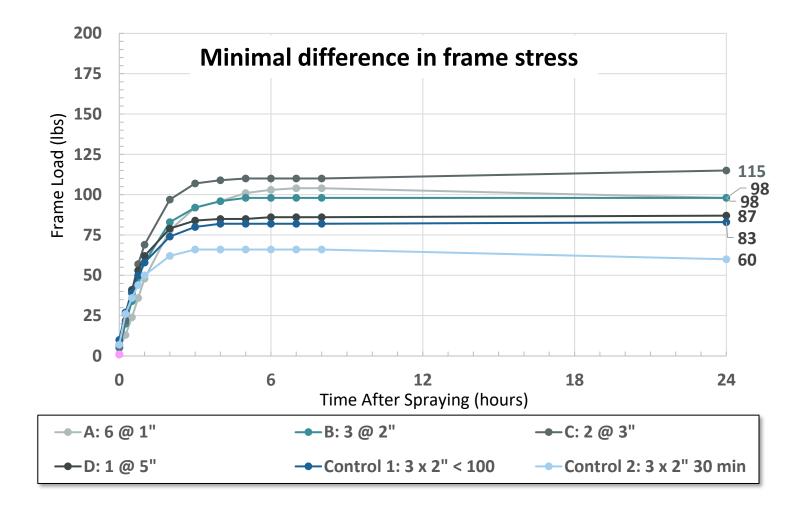
Frame Load vs Application (3 x 2")



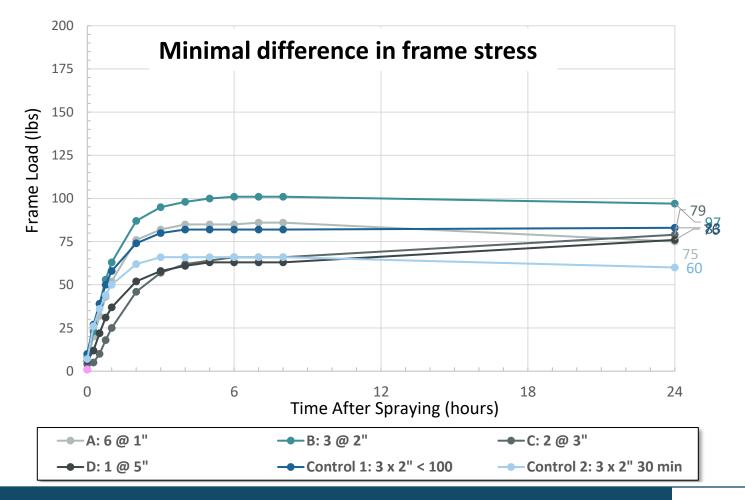
Frame Load vs Application (2 x 3")



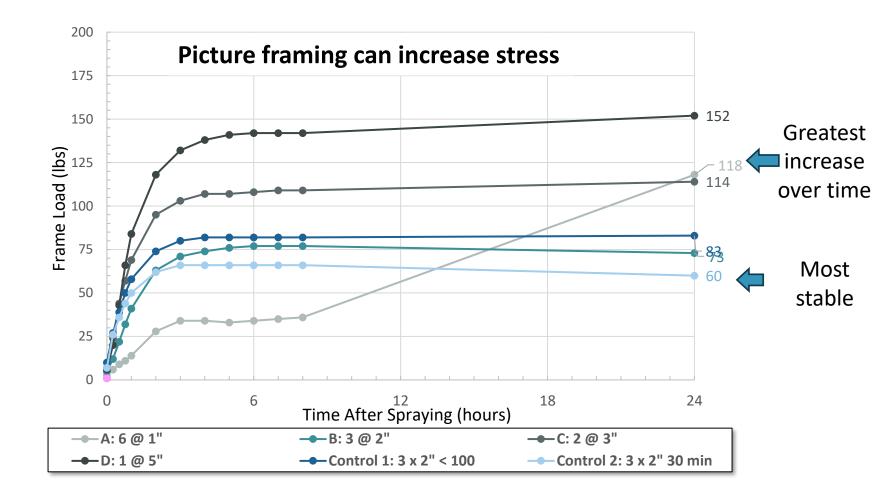
Frame vs Load vs Application (1 x 5")



Frame Load vs Application (Vertical)



Frame Load vs Application (Vertical + PF)



Frame Load vs Application (Side by Side)

Frame Load vs Application (Side by Side + PF)

Frame Pressure Vs Application Summary (lbs)

Frame Load af	Lift Configurations						
Spray Tec	Spray Technique			С	D	Control	
Picture Frame	Spray Direction	6 @ 1"	3 @ 2"	2 @ 3"	1 @ 5"	3 @ 2"	
Yes	Side-side	118	73	114 152		$>\!$	
No	Side-side	75	97	79	76	$>\!$	
Yes	Vertical	98	98	115	93	\succ	
No	Vertical	76	83	92	87	\succ	
Yes	Rising Foam	\succ	44	111	\succ	\succ	
No	Rising Foam	\succ	29	<mark>180</mark>	\succ	\succ	
No	Vertical (Control 1)	\succ	$\left \right>$	\succ	\succ	83	
No	Vertical (Control 2)	\succ	\succ	\succ	\succ	60	
	Average	92	71	115	54	72	

OBSERVATIONS:

- Picture-framing appears to increase frame load in most cases
- Waiting 30 minutes between each pass (Control 2) samples using MII have lowest frame loads
- Long-term frame load can increase or decrease depending on lift thickness and spray technique

Frame Load Over Extended Time

Measured Fixture load from 3 to 30 days after spraying

Note:

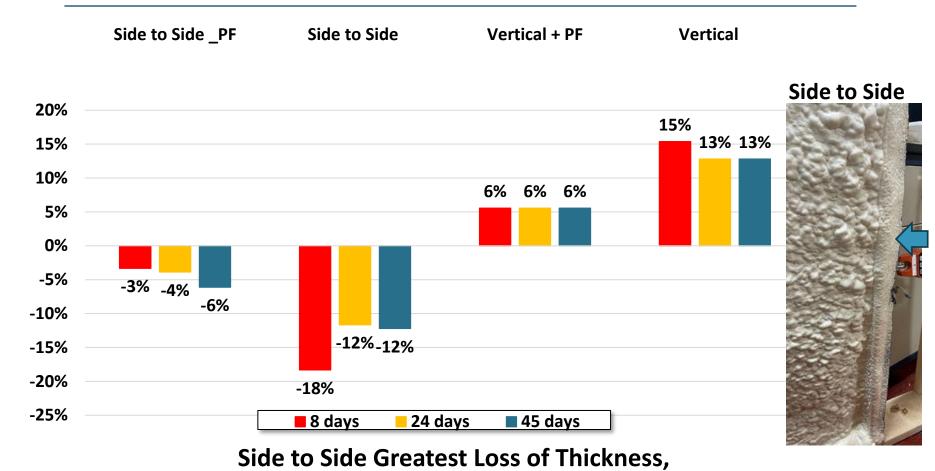
Note:	Lift Thickness	Spray Technique	Day	Day 1 Load (lb)	Day X	Day X Load (lb)	Change on Day X (lb)		
"Day X" refers		Side to Side + PF		118	8	61	-57		Large continued
to data taken	6 X 1"	Side to Side	1	75	5	77	2		load decrease
on the shown		Vertical + PF	I	98	5	107	9		
in the Day X		Vertical		76	5	84	8		
column.		Side to Side + PF		73	5	84	11		
		Side to Side		97	6	107	10		
Due to staffing	3 x 2"	Vertical + PF	1	93	6	94	1		
availability,	3 X Z	Vertical		83	31	132	49		
loads were		Into Rising Foam + PF		44	5	57	13		
taken 3, 4,		Into Rising Foam		29	5	33	4		
5,6, 8, 28 or	2 x 3"	Side to Side + PF		114	5	113	-1		
31 days after		Side to Side	1	79	8	96	17		Large continued
application		Vertical + PF		115	31	132	17		load increase
		Vertical		92	31	116	24		relative to others
		Into Rising Foam + PF		111	31	118	7	$ \square $	with same lift
		Into Rising Foam		180	3	176	-4		configuration
		Side to Side + PF	•	152	28	175	23		
	1 x 5"	Side to Side	1	76	4	85	9	Y	
	123	Vertical + PF	' <	93	31	110	17 /		
		Vertical		87	4	85	-2		
	Controls	Control 1	1	83	31	71	-12		
	Controts	Control 2	1	60	8	47	-13]	

Frame Test Change in Thickness vs Application

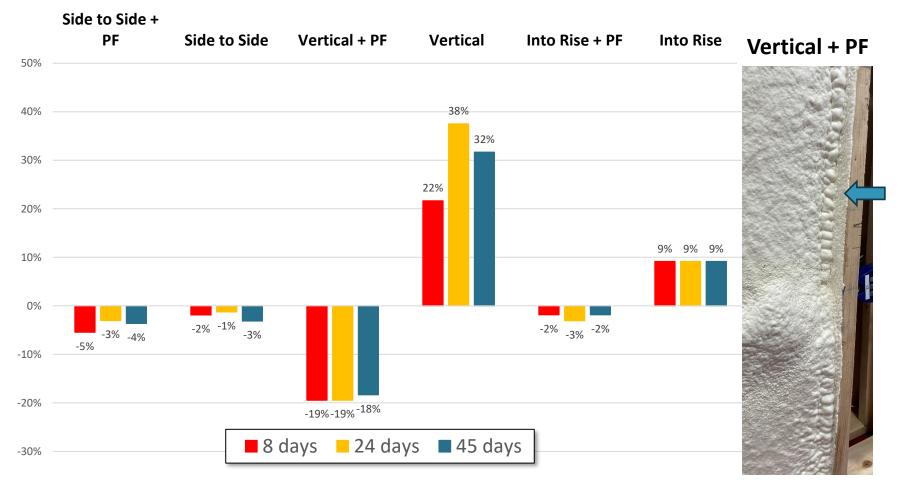
Change in Thickness

Background:

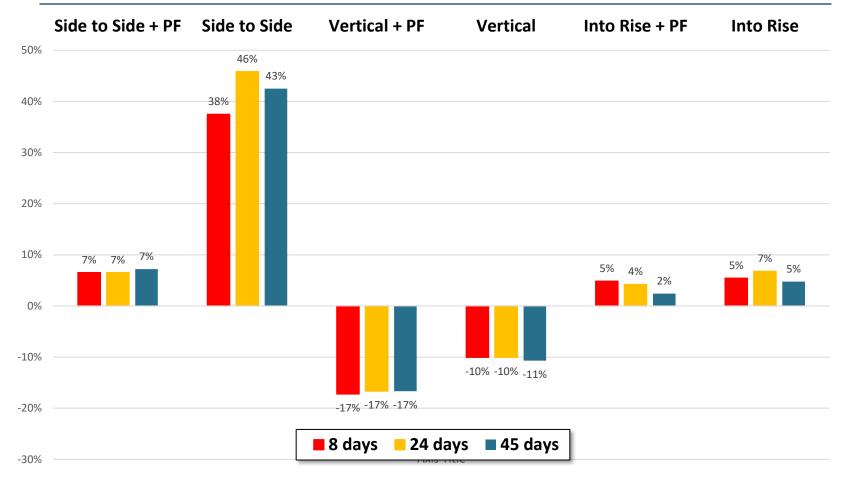
Closed-cell foam can shrink over time Sometimes called reversion Most prevalent in thickness direction


Test:

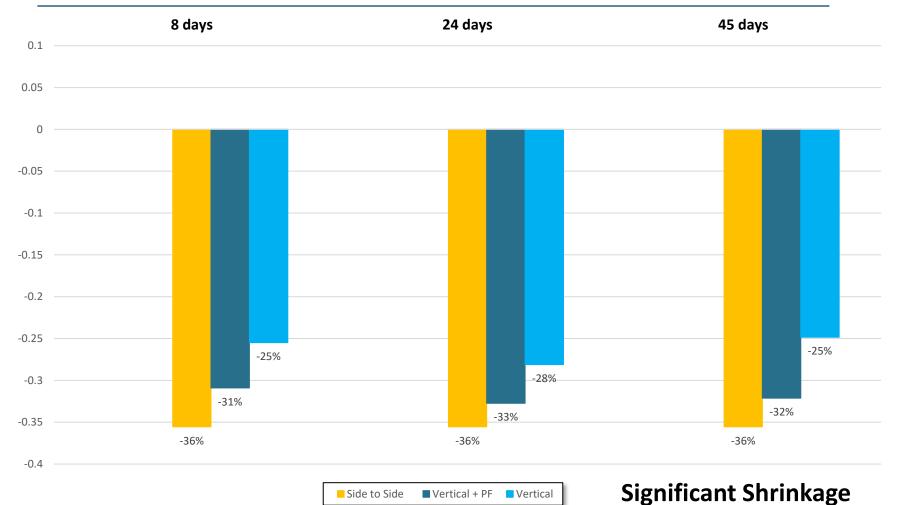
- Pass thickness was measured for each pass while spraying the frames.
- •After the frames are sprayed, overall foam thickness of the Fram was measured at intervals of 8, 24, and 45 days.
- Data was recorded and compared to the initial sprayed final thickness measurements.


% Change in Thickness vs Time (6 x 1")

Vertical Greatest Post Growth


% Change in Thickness vs Time (3 x 2")

Vertical + PF Greatest Loss of Thickness, Vertical Greatest Post Growth


% Change in Thickness vs Time (2 x 3")

Vertical + PF Greatest Loss of Thickness, Side to Side Greatest Post Growth

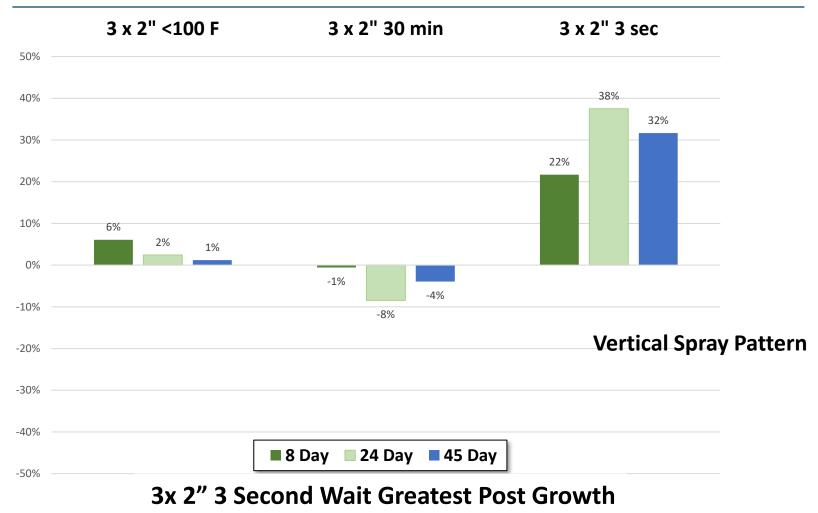
Change in Thickness vs Time (1 x 5")

Change in Thickness 1 x 5"

Side to Side +PF

Side to Side

Vertical +PF



Vertical

Change in Thickness vs Time (Controls)

% Change in Thickness vs Control Summary

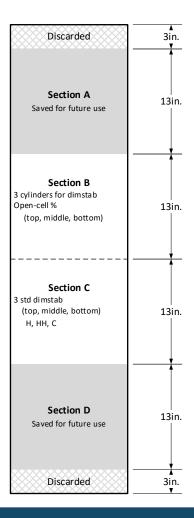
% Change from initial			Lift Configurations													
Spray Technique 6 x 1"		3 x 2"		2 x 3"		1 x 5"			Control							
Picture Frame	Spray Direction	8 Days	24 Days	45 Days	8 Days	24 Days	45 Days	8 Days	24 Days	45 Days	8 Days	24 Days	45 Days	8 Days	24 Days	45 Days
Yes	Side-side	-3%	-4%	-6%	-5%	-3%	-4%	7%	7%	7%	\succ	\succ	\succ	\succ	\succ	\succ
No	Side-side	-18%	-12%	-12%	-2%	-1%	-3%	38%	46%	43%	-36%	-36%	-36%	\ge	\succ	\succ
Yes	Vertical	6%	6%	6%	-19%	-19%	-18%	-17%	-17%	-17%	-31%	-33%	-32%	\ge	\times	\succ
No	Vertical	15%	13%	13%	22%	38%	32%	-10%	-10%	-11%	-25%	-28%	-25%	\ge	\times	\succ
Yes	Rising Foam	\times	\times	\ge	-2%	-3%	-2%	5%	4%	2%	$\left \right>$	\times	\times	$\left \right>$	\times	\mathbf{X}
No	Rising Foam	\times	\times	$\mathbf{ imes}$	9%	9%	9%	5%	7%	5%	\mathbf{X}	\times	\times	$\mathbf{ imes}$	\times	\mathbf{X}
No	Vertical (Control 1)	\times	\times	$\left \right>$	\mathbb{X}	$\left \right>$	\times	$\left \right>$	\times	\times	\mathbf{X}	\times	\times	6%	2%	1%
No	Vertical (Control 2)	\mathbf{X}	\times	\mathbf{X}	$\left \right>$	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	-1%	-8%	-4%

- 1 2" passes using side to side technique showed most consistent performance
- 5" passes showed largest amount of shrinkage
- Controls showed consistent low change vs time

Box Test Foam Quality

45

Box Testing Timeline


Testing on 22 Box Sample

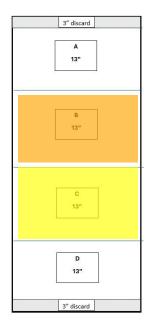
Property	Test Method/ Conditions	Frequency	Timeline
Density - Core - Top - Middle - Bottom - Cylinder	ASTM D1622	Once	2-5 days after spraying
% Closed Cell - Top - Middle - Bottom	ASTM D6226	Once	19-27 days after spraying
Dimensional Stability - Top - Middle - Bottom	ASTM D2126 Hot (90°C) Cold (-40°C) Hot and Humid (70°C/90% RH)	Initial, 1,7,14 days	3-5 days after spraying
Dimensional Stability - Cylinder	Hot (90°C) Cold (-40°C) Hot and Humid (70°C/90% RH)	Initial, 1,7,14 days	3-5 days after spraying

Box Testing Diagram

Box Test

Foam Quality

Application Technique vs Density



Density

D1622/D1622M Test Method for Apparent Density of Rigid

Measured 2 to 5 days after spraying

Density samples cut from cavity inserts as follows:

- Block, Top, Middle, and Bottom samples are cut from <u>Section C</u>
- Average dimensions of Block sample: 3.5"H x 20" Long x 12" Wide
- Block density was measured then split into 3 samples:
 - Top (closest to surface)
 - Middle
 - Bottom (closest to first pass sprayed)
- Cylinder Densities are taken from <u>Section B</u> with a 3" foam core extractor.
- Densities were measured on the whole cored sample

Density vs Application Technique Summary

Density	Lift Configurations							
Spray Tec	Spray Technique			С	D	D'		
Picture Fixture	Picture Fixture Spray Direction		3 @ 2"	2 @ 3"	1@5″	3@2″		
Yes	Side-side	2.29	2.17	1.89	1.75	$>\!$		
No	Side-side	2.29	2.09	1.90	1.81	$>\!$		
Yes	Vertical	2.45	2.28	2.11	2.00	$>\!$		
No	Vertical	2.44	2.16	2.24	2.06	$>\!$		
Yes	Rising Foam	\succ	2.31	2.23	\succ			
No	Rising Foam	\succ	2.36	2.19	\succ			
No	Vertical (<100)	\succ	$>\!$	$>\!$	$>\!$	2.28		
No	Vertical (30 min)	\succ	$>\!$	$>\!$	$>\!$	2.31		
	Average	2.37	2.23	2.09	1.90	2.30		

- No impact from picture framing
- Dependent on spray direction (rising foam highest, side-to-side worst)
- Dependent on lift thickness 5" pass produces lowest density
- 1" to 2" lifts are best (except for spraying into rising foam) are most consistent with manufacturer specifications

Box Test

Foam Quality

Application Technique vs % Closed Cell Content

How a Pycnometer works... % Closed-Cell Method

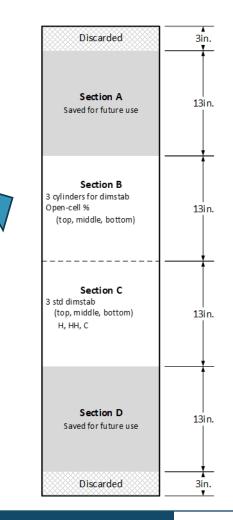
Before testing begins the Pycnometer is calibrated with a ball bearing standard.

Foam samples are weighed and measured for volume and the data is entered into the pycnometer. The foam sample is then placed into the sample chamber.

The Pycnometer pushes nitrogen into the Sample Chamber and measures the volume of the gas that is displaced into the Extension Chamber. (ex. OC foam will have lower volume displaced than CC foam because there is more space in the foam for the gas to sit.)

Results are recorded in % closed cell and all 5 samples tested are averaged and reported.

https://www.anton-paar.com/us-en/products/details/ultrapyc/?sku=231520



% Closed-Cell Content Test

D6226 Test Method for Open Cell Content of Rigid Cellular Plastics

Measured 20 to 28 days after spraying

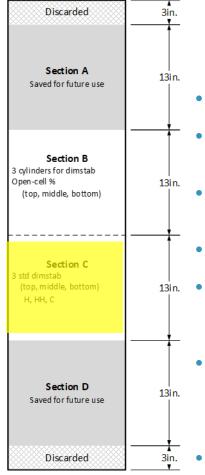
Closed-cell content samples cut from cavity insert Section B

% Closed Cell vs Application Technique Data Summary

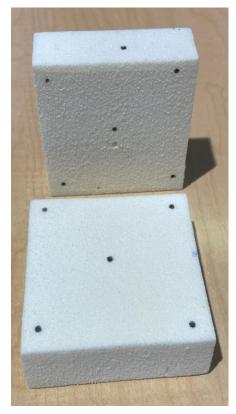
	Closed-Ce	Lift Configurations						
	Spray Technic	А	В	С	D	D'		
	Picture Fixture Spray Direction			3@2"	2@3"	1@5″	3@2″	
1	Yes	Side-side	89	88	59	67	$>\!$	
2	No	Side-side	90	89	65	65	$>\!$	
3	Yes	Vertical	92	92	83	72	\succ	
4	No	Vertical	92	91	83	83	\succ	
5	Yes	Rising Foam	\ge	86	75	\succ	90	
6	No Rising Foam		\triangleright	87	77	\succ	91	
		91	89	74	72	90		

- Thicknesses greater than 2" have lower % closed cell content
- Side-side lower % closed cell than vertical
- Picture framing no impact on % closed cell

Box Test


Foam Quality

Application Technique vs ASTM Dimensional Stability


55

Dimensional Stability

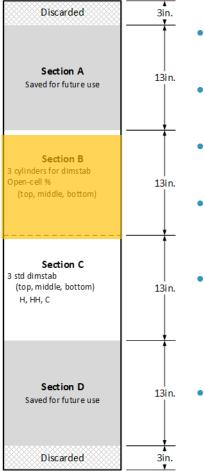
D2126 Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging

- Samples were taken from section C of the box
- Started measurement 3 to 5 days after spraying
- Large core sample split into 3 sections Top, Middle, Bottom
- Sample size is 3"x3"x1 and ran in triplicate
- Conditions were Hot (90°C), Hot & Humid (70°C – 95% Relative Humidity), and Cold (-29°C)
- Sample dimensions were measured Initial (after cut) then placed in their conditions. Then measured at 24hrs, 10 days, and 17 days.
 - Results are recorded as % Volume Change

ASTM Dimensional Stability @ 14 Days- vol % Change

14- Day Dimer	nsional Stability (% Volume Change)	Lift Configuration						
	Spray Technique		Α	В	С	D	Control	
Picture Frame	Spray Direction	Conditioning	6x1"	3x2"	2x3"	1x5"	3x2"	
		Cold (-40°C)	-0.4	-0.6	-17.4	-20.2	$\left \right\rangle$	
Yes	Side-Side	Hot (90°C)	9.9	13.4	6.1	22.4	\geq	ASTM Specification
		Hot-Humid (70°C/90% RH)	6.9	9.3	4.2	0.7	\geq	•
		Cold (-40°C)	-0.4	-0.6	-4.6	-17.0	\geq	< 15 % change
No	Side-Side	Hot (90°C)	6.2	15.0	17.1	9.5	\geq	
		Hot-Humid (70°C/90% RH)	5.0	4.7	1.7	0.0	\geq	
		Cold (-40°C)	-0.3	-0.5	-0.6	-6.9	\geq	
Yes	Vertical	Hot (90°C)	1.6	2.4	18.4	9.7	\geq	
		Hot-Humid (70°C/90% RH)	4.5	3.4	1.6	2.6	\geq	
		Cold (-40°C)	-0.4	-0.5	-0.7	-4.6	\geq	
No	Vertical	Hot (90°C)	4.5	4.9	17.2	10.7	\geq	
		Hot-Humid (70°C/90% RH)	3.5	3.3	1.2	1.6	\geq	Aging in Cold
		Cold (-40°C)	\geq	2.0	-1.6	\geq	\geq	
Yes	Into Rising Foam	Hot (90°C)	\geq	3.8	1.2	\geq	\geq	Environment:
		Hot-Humid (70°C/90% RH)	\geq	0.3	-1.9	\geq	\geq	Shrinks Foam
		Cold (-40°C)	\geq	-0.7	1.5	\geq	\geq	Shrinks Fualli
No	Into Rising Foam	Hot (90°C)	\geq	2.2	1.6	>	>	
		Hot-Humid (70°C/90% RH)	\geq	2.3	-0.2	\geq	>	
		Cold (-40°C)	\ge	\geq	\ge	>	-0.6	
No	Control (< 100F)	Hot (90°C)	\bowtie	\bowtie	\bowtie	>	12.8	
		Hot-Humid (70°C/90% RH)	$\left \right\rangle$	$\left \right>$	$\left \right>$	\triangleleft	4.5	
		Cold (-40°C)	\gg	$\left \right>$	$\left \right>$	>	-0.8	
No	Control (30 min)	Hot (90°C)	\langle	\langle	\langle	\Leftrightarrow	10.3	
		Hot-Humid (70°C/90% RH)	\geq	\geq	\geq	\geq	4.9	

Box Test


Foam Quality

Application Technique vs Dimensional Stability

Cylinder

Cylinder Dimensional Stability @ 14 Days- vol % Change

- Samples were taken from <mark>section B</mark> of the box
- Started measurement 3 to 5 days after spraying
- Sample size is 3" diameter cylinder and ran in triplicate
- Conditions were Hot (90°C), Hot & Humid (70°C – 95% Relative Humidity), and Cold (-29°C)
- Sample dimensions were measured Initial (after cut) then placed in their conditions. Then measured at 24hrs, 10 days, and 17 days.
- Results are recorded as % Volume Change

Cylinder Dimensional Stability @ 14 Days- vol % Change

14- Day Dimer	nsional Stability (% Volume Change)	Lift Configuration									
	Spray Technique		Α	В	С	D	Control				
Picture Frame	Spray Direction	Conditioning	6x1"	3x2"	2x3"	1x5"	3x2"				
		Cold (-40°C)	-1.5	-0.5	-29.6	-17.6	>				
Yes	Side-Side	Hot (90°C)	2.3	-6.2	11.7	17.6	>				
		Hot-Humid (70°C/90% RH)	-5.3	-9.8	-11.1	-14.8	$>\!$				
		Cold (-40°C)	-0.2	-0.1	-4.3	-18.6	\geq				
No	Side-Side	Hot (90°C)	1.9	-7.5	8.1	16.9	\geq				
		Hot-Humid (70°C/90% RH)	-0.5	-3.9	-11.0	-16.7	$>\!$				
		Cold (-40°C)	0.3	-0.3	-0.5	-14.7	\ge				
Yes	Vertical	Hot (90°C)	-3.7	-3.7	12.0	14.8	\geq				
		Hot-Humid (70°C/90% RH)	-2.7	-1.5	-4.1	-18.3	\geq				
	Vertical	Cold (-40°C)	-1.1	-0.3	-3.2	-0.8	\geq				
No		Hot (90°C)	-0.7	-6.8	16.1	13.5	\geq				
		Hot-Humid (70°C/90% RH)	-5.0	-5.6	-5.1	-15.6	\geq				
	Into Rising Foam	Cold (-40°C)	\geq	0.0	-1.4	\geq	\geq				
Yes		Hot (90°C)	\geq	-15.9	3.7	\geq	\geq				
		Hot-Humid (70°C/90% RH)	\ge	-7.7	-11.9	\geq	\geq				
		Cold (-40°C)	\geq	-1.2	-1.9	\geq	\geq				
No	Into Rising Foam	Hot (90°C)	\geq	-13.5	6.6	\geq	\geq				
		Hot-Humid (70°C/90% RH)	\ge	-9.9	-13.3	\ge	\geq				
		Cold (-40°C)	$\left \right>$	\geq	\geq	\geq	-1.5				
No	Control (< 100F)	Hot (90°C)	\geq	\geq	\geq	\geq	8.4				
		Hot-Humid (70°C/90% RH)	\ge	\geq	\geq	\geq	0.9				
		Cold (-40°C)	\geq	\geq	\geq	\geq	-0.6				
No	Control (30 min)	Hot (90°C)	\ge	\geq	\geq	\geq	5.3				
		Hot-Humid (70°C/90% RH)	\ge	\geq	\geq	\geq	-17.7				

Conclusions:

5" foam samples show dimensional stability issues

Conclusions: General

Extensive study designed to demonstrate impact application methods have on foam quality

• two sample types (Box, Frame), total 484 tests, >1M data points

Limited variables:

• Spray lifts, Spray pattern, Spray techniques

Control samples meet manufacturer published criteria when sprayed per TDS

Conclusion: Frame Testing- Exotherm

Exotherm (peak):

- Picture Framing has no visible impact on peak temperature
- Dependent on spray direction
- Dependent on lift thickness
- MII provide lowest peak temperatures
- Increasing lift thickness increases exothermic temperatures from 225°F to about 245°F

Exotherm Cooling Time to Room Temperature (<80°F):

- 6 x 1" pass took the longest time to drop below 80°F
- 1 x 5" pass took the least amount of time to drop below 80°F
- Comparing 30 second wait time to MII wait time shows insignificant difference in time to drop below 80°F

62

Conclusion: Frame Testing- Load

Sample Thickness

- Picture-framing appears to increase frame load in most cases
- Waiting 30 minutes between each pass (Control 2) samples using MII have lowest frame loads
- Long-term frame load can increase or decrease depending on lift thickness and spray technique

Conclusion: Frame Testing- Thickness

Sample Thickness

- 1 2" passes using side to side technique showed most consistent performance
- 5" passes showed largest amount of shrinkage
- Controls showed consistent low change vs time

Conclusion: Box Testing- Foam Quality

Density:

- No major impact from picture framing
- Strongly dependent on spray direction (rising foam highest, side-to-side worst)
- Strongly dependent on spray direction (rising foam highest, side-to-side worst)
- Heavily dependent on lift thickness 5" pass produces lowest density
- 1" to 2" lifts are best (except for spraying into rising foam) are most consistent with manufacturer specifications

% Closed Cell Content:

- Thicknesses greater that 2" have lower % closed cell content
- Side-side lower % closed cell than vertical
- Picture framing no impact on % closed cell

Conclusion: Box Testing- Foam Quality

Dimensional Stability ASTM:

- Thicker lift more failures
- Side by side with picture frame issues with cold conditions
- Samples sprayed side by side 2 x 3" Hot humid failures
- 1 x 5 " more failures

Dimensional Stability Cylinder :

 6 x 1" pass took the longest time to drop below 80°F Failures 1 x 5" side by side with and without picture frames have issues under all conditions

Recommendations/Suggestions

Suggested improvements to the load frame apparatus

- Better pressure gauges for frames- digital feed
- Automatic measurement for thickness
- Is use of tape at seam restricting foam movement?
- Balance feet for base of frame
- Thermocouple placement at lift lines

